SUN HORIZON PROJECT: Executive Presentation

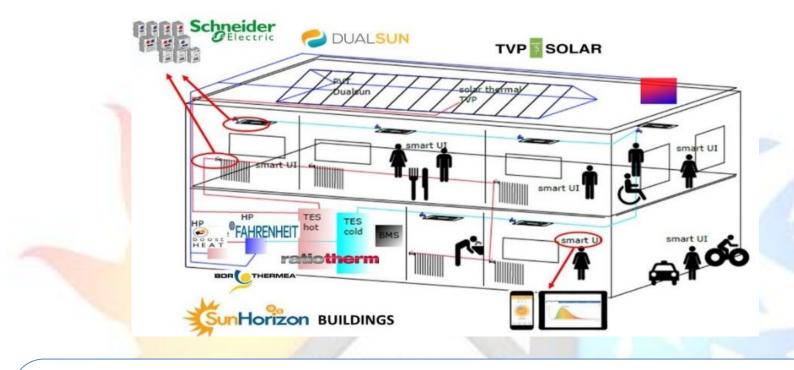
Sun Horizon Sun Coupled Innovative Heat Pumps

This Project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement N. 818329

Presentation Agenda

- Project introduction, motivation and objectives
- The SunHorizon consortium
- SunHorizon Project: A demonstration to Market Project

Our Vision


TRL 7 – Sun and HP as baseload of EU H&C systems 6 Technologies to be integrated – 5 Technology Packages – 7 Demos 3 Research Pillars based on Functional Monitoring Data exploitation

<u> DESIGN – MANUFACTURE - CONTROL</u>

Our Vision

Key Message: As stated in EU Strategy for H&C, "large-scale demonstration projects of energy-efficient and low/zero-carbon technologies are needed to help reduce technical and market barriers by providing robust data to evaluate their performance in each market segment". At this purpose SunHorizon aims to be a breakthrough demonstration to market project involving **21 partners' expertise and 8 Demonstration Sites all around EU,** focusing its activities on "reducing system costs and improving performance as well as optimising existing technologies for H&C applications and for some of the most promising market segments"

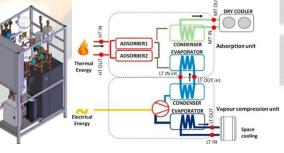
SunHorizon Abstract

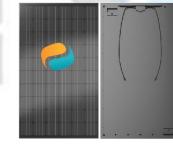
Heat Pump and solar appliances are the most social accepted residential Renewable Energy based energy systems. SunHorizon will demonstrate up to TRL 7 innovative and reliable Heat Pump solutions (thermal compression (BH), adsorption (FAHR), reversible (BDR)) that acting properly coupled and managed with advanced solar panels (PV, Hybrid (DS), thermal (TVP) can provide heating and cooling to residential and tertiary building with lower emissions, energy bills and fossil fuel dependency. A Cloud based functional monitoring platform (SE) will be realised in the project to be the "performance data" mine" for the development of Data Driven/KPI oriented optimized algorithms and tools to predict maintenance (CAR, EXE), optimize the management towards maximisation of solar exploitation and give to the manufacturer inputs for new installation design, via an innovative "robust design under uncertainty approach" (RINA-C) which aims to overcome classical H&C equipment oversizing due to safety factors. This monitoring platform (CW, IES) will also drive smart end user interfaces that will be applied at building level to collect thermal comfort data towards a new end-user driven H&C control system. SunHorizon tools will be applicable not only to proposed solar coupled HPs, but to all H&C appliances towards a global increasing efficiency of EU H&C stock and its decarbonisation. 5 low emission H&C Technology packages (TPs) will be tested coupling HP and solar installation. SunHorizon aims to be a breakthrough demonstration to market project involving 21 partners and 8 demosites (GRE, AJSCV, EMVS, RTU) all around EU focusing its activities on "reducing system costs and improving performance as well as optimising existing technologies for H&C applications". SunHorizon will be focused on three main research pillars interacting each other towards project objectives achievement, demonstration and replication: i) OPTIMIZED DESIGN, ENGINEERING AND MANUFACTURING OF SUNHORIZON TECHNOLOGIES ii) SMART FUNCTIONAL MONITORING FOR H&C,iii) KPI DRIVEN MANAGEMENT AND DEMONSTRATION.

MO1: Increase SunHorizon H&C technologies performances – WP2 - WP3 **HOW?** Enhancement of BH, BDR, FAHR, TVP, DS, RATIO performances MO2: Promote cloud based functional monitoring for H&C purposes – WP4 HOW? Smart End User interface - platform as data mine for H&C manufacturers for optimized management and design MO3: Reduce SunHorizon H&C technologies CAPEX and OPEX – WP4 - WP5 HOW? Data driven Predictive Maintenance and controller, Design Under Uncertainty Tool MO4: Demonstration of SunHorizon Innovations in different EU countries and type of buildings – WP6 **HOW?** Demonstration in 7 demosites MO5: Promote the replication of SunHorizon Concept – WP7 **HOW?** Study of specific business models – Replication feasibility studies

MOG: Dissemination and Capacity Building – WP8

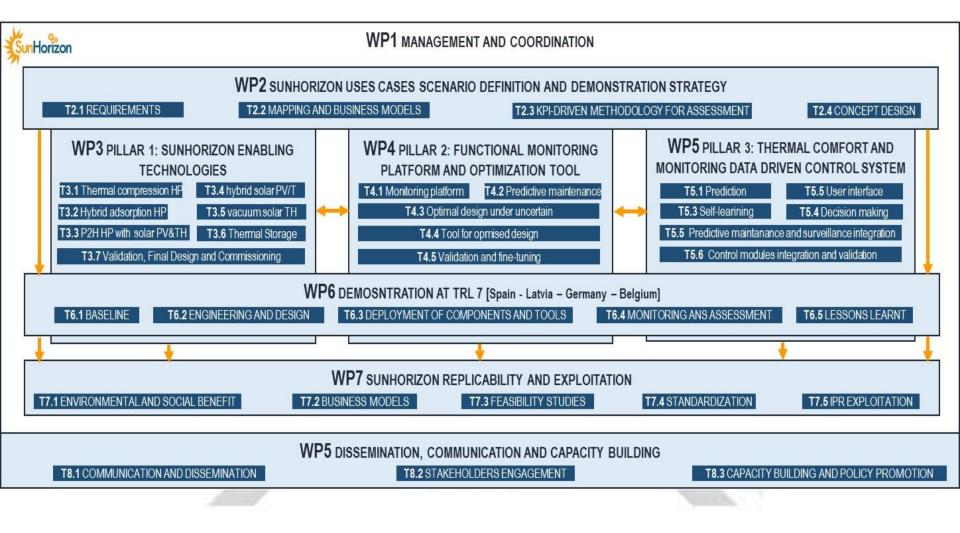
HOW? Stakeholders Engagement – Policy Positioning paper


SunHorizon TPs



SunHorizon TP		Solar-HP integration concept	Description	
TP1	TVP+BH	Parallel integration	TVP for space heating + DHW; BH to cover non solar periods	
TP2	DS+BH	Mixed solar- assisted/ parallel integration	BH for space heating + DHW support; DS PV-T thermal output to cover as much heat demand as possible + excess electricity production for appliances	
ТРЗ	TVP+FAHR		TVP for space heating + DHW in winter + activation of the thermal compressor of the adsorption chiller (FAHR)	
TP4	DS+BDR	Parallel integration	DS PV-T thermal output to cover part of SH and DHW heat demand + electricity production to cover reversible HP electricity consumption	
TP5	TVP+BH+ FAHR	Mixed solar-driven/ parallel integration	TVP for space heating + DHW; BH to cover non solar periods; FAHR adsorption chiller activated only by BH or also by TVP	

THE boostHEAT SOLUTION : Technologie



TVP SOLAR

SunHorizon Challenges

- High TRL to be achieved of integrated TPs: TRL 7
- A pre-industrial project
- Demonstration in different climates and type of building
- Cruciality of Data Monitoring to drive the three research pillars
- Dissemination and Stakeholders' engagement is crucial: we're all committed!
- A long but well structured project both in terms of responsibilities and timing:
- partners have to keep themselves updated even if not so much involved!
- Details and responsibilities have to be properly taken into account!

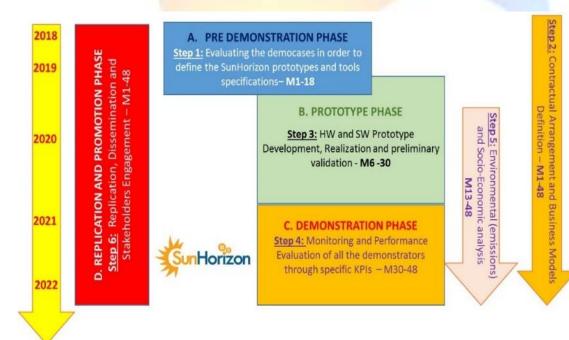
Project Team

10.0

No Name	Short name	Country
1 RINA CONSULTING SPA	RINA-C	Italy
2 COMMISSARIAT A L ENERGIE 2 ATOMIQUE ET AUX ENERGIES ALTERNATIVES	CEA	France
3 EXERGY LTD	EXE	United Kingdom
4 Schneider Electric SPA	SE	Italy
5 BOOSTHEAT	вн	France
6 CONSIGLIO NAZIONALE DELLE RICERCHE	ITAE	Italy
7 FAHRENHEIT GMBH	FAHR.	Germany
8 FUNDACION CARTIF	CARTIF	Spain
9 IES R&D	IES	Ireland
10 IVL SVENSKA MILJOEINSTITUTET AB	IVL	Sweden
11 EUROPEAN HEAT PUMP ASSOCIATION	EHPA	Belgium
12 TVP SOLAR SA	TVP	Switzerland
13 DUALSUN	DS	France
14 CHECKWATT AB	cw	Sweden
15 AJUNTAMIENTO DE SANT CUGAT DEL VALLES	AJSCV	Spain
16 GROUPEMENT DE REDEPLOIEMENT ECONOMIQUE DU PAYS DE LIEGE	GRE	Belgium
17 BDR THERMEA GROUP BV	BDR.	Netherlands
18 RATIOTHERM HEIZUNG + SOLARTECHNIK GMBH & CO. KG	RATIO	Germany
19 GAS NATURAL SDG SA	GNF	Spain
20 RIGAS TEHNISKA UNIVERSITATE	RTU	Latvia
21 EMPRESA MUNICIPAL DE LA VIVIENDA Y SUELO DE MADRID SA	EMVS	Spain
1		

An Industry Driven Consortium

This Project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement N818329



Roles

Clear and precise role – High Commitment Period

A: PRE-DEMONSTRATION PHASE: MI-18– All partners committed to pave the ground to future activities at tools, technology and demosites poiny of view

B. PROTOTYPE PHASE: M6-30 - industrial partner strongly involved

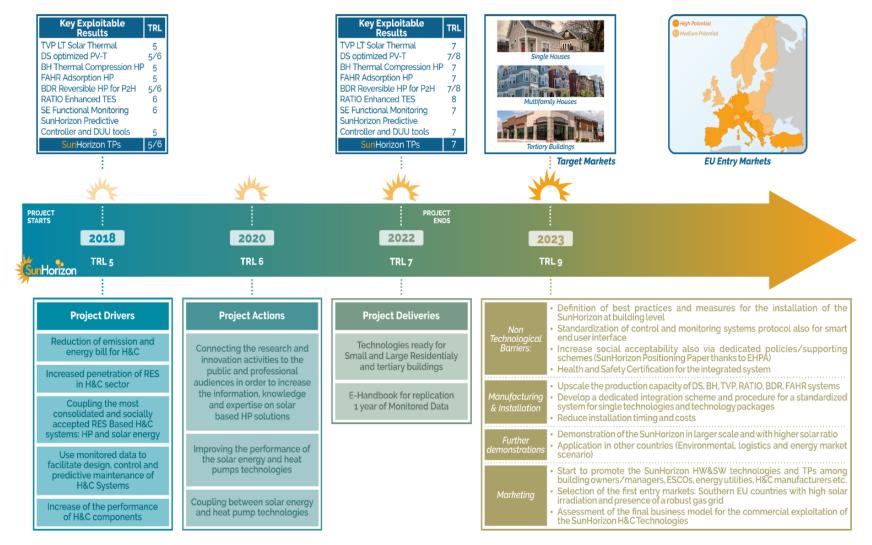
C: DEMONSTRATION PHASE: M3D-48 *D. REPLICATION AND PROMOTION PHASE:* M1-48 – all partners involved under EHPA and RINA-C leadership

MARKETABILITY OF THE SunHorizon SOLUTIONS

SunHorizon: A demonstration to Market Project

N⁰	Location	Climate	Building type	SunHorizon TP	Climate and local energy market challenges
1	Berlin (Germany)	Cold	Small residential	TP1: TVP+BH	Cold continental climate with harsh winters and warm summers, presences of local gas grid and DHN (increasing number of
2	Nürnberg (Germany)	Cold	Large residential	TP2: DS+BH	disconnections), high penetration of RES and distributed generation in the local energy market, considerable price of electricity (0,15-20 €/kWh)
3	Saint Cugat (Spain)	Warm	Tertiary (Civic centre)	TP3: TVP+FAHR	Good solar irradiation, municipalities looking for new reliable technologies to save money, achieve SEAP objectives and to be promoted among their citizens
4	Madrid (Spain)	Average	Large residential	TP4:DS+BDR	Cold winter and hot summers, good solar potential, social housing needs renovation both at envelope and H&C level also to reduce their OPEX and rental fees
5	S. Lorenzo (Spain)	Warm	Small residential	TP4:DS+BDR	Good solar potential, significant summer cooling demand during sunny periods, single houses can become active players on the energy market thanks to Power-to-Heat (P2H) schemes
6	Verviers (Belgium)	Average	Tertiary (Sport Centre)	TP1: TVP+BH	Sport facilities are often not well energy managed all around EU, even if heated volumes are considerable. Promote coupling of
7	Verviers (Belgium)	Average	Tertiary (Swim. pool)	TP2: DS+BH	solar + HP for low temperature usage such as DHW and swimming pool water.
8	Riga (Latvia)	Cold	Small residential	TP2: DS+BH	Scandinavian country with the higher penetration of gas grid, robust presence of HP -smart systems, harsh winters

DEMONSTRATION IS CRUCIAL IN SunHorizon – let's define details ASAP (logistic responsibilities, calendar, costs, permitting...) Collaboration between TPs/Demos responsible is crucial



This Project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement N818329

SunHorizon: A demonstration to Market Project

This Project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement N818329

SunHorizon Stakeholders group

SUN HORIZON NEEDS YOUR SUPPORT

IN SunHorizon an Industrial stakeholder group will be established starting from EHPA Network – **Partners to be involved:** ESCOs, energy utility, building owners/ Managers, HP, solar and H&C technology manufacturers. Energy agencies,etc.

Their support is crucial to foster replication and marketability.

Main targets:

- within M12: Analyze current bottlenecks/challenges towards SunHorizon TPs implementation presentation of SunHorizon tools and guidance towards their specification refinement
- Final Event: promotion of demonstration results and engagement for replication

THANKS FOR YOUR TIME!!! <u>www.sunhorizon-project.eu</u> Please follow us on FB, Twitter, Linkedin

This Project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement N. 818329